

USER FACILITY DEDICATED **TO BIOMATERIALS**

BIOPACIFIC MIP RESOURCES ARE FREE OF CHARGE TO U.S. BASED USERS WITH APPROVED PROPOSALS

For more information please visit the BioPACIFIC MIP website: biopacificmip.org

Additive Manufacturing

Automated Materials Synthesis

High Throughput Characterization

Living Biofoundry

PROPOSAL SUBMISSION

The NSF BioPACIFIC MIP operates a one of a kind user facility dedicated to creating a nexus for synthetic biology and materials to revolutionize high-performance polymers. Users are uniquely able to elucidate biomaterial structure and function to achieve materials-by-design, construct new bio-derived functional monomers from living organisms, access novel sequence-specific materials (e.g. peptoids), synthesize stimuli-responsive "smart" biomaterials, scale-up biomaterial production, and incorporate state-of-the-art theoretic simulation and machine learning algorithms. Submit a proposal and gain free access to our facilities!

PROPOSAL SUBMISSION

Rolling submissions Proposal submission via:

> biopacificmip.org Consult with the technical team before submission

FEASIBILITY REVIEW

I'ES

Resource assessment: Equipment Materials Staffing

MERIT REVIEW by external committee

KEY CRITERIA: Intellectual Merit Broader Impacts Alignment with mission Knowledge hub growth Diversity

EXECUTION

Policies and Forms Travel logistics Scheduling

Funding available to enhance diversity of participation

LIVING BIOFOUNDRY

An automated, high-throughput platform for gene assembly, amplification, transformation, strain growth, and metabolite analysis enables the production of bio-based monomers and polymers with precise repeat units, domains and chirality directly from microorganisms. By providing an equipment set focused on automation, control, and high-throughput pathway assembly at the gene level and metabolite detection at the cellular level, the Living Biofoundry will enable biosynthetic manufacturing of commodity monomers and polymers.

THERMOFISHER SYNTHETIC BIOLOGY AUTOMATION SYSTEM

Integrated, automated workflow

Accelerates the DBTL cycle from 10s of samples-per-week to >500 samples-per-week

Microplate robot

Automated incubators

Reagent dispenser

Automated liquid handling

Plate labeler/reader

Thermal cycler

Plate sealer

THERMOFISCHER TSQ ALTIS INLINE TRIPLE QUADRUPOLE UHPLC/MS/MS

5-2000 m/z mass range w/ Active Ion Mgmt 🗸

6 channel high-pressure solvent blending

AUTOMATED SYNTHESIS

GYROS PROTEIN TECHNOLOGIES SYMPHONY X Solid Phase Synthesizer

Employs 40 unique monomers and 24 reaction vessels

Automatic cleavage and reagent recovery

Scale up to 2 grams of resin per vessel

SHIMADZU NEXERA REVERSE-PHASE ANALYTICAL/PREPARATIVE HPLC-MS

Dual prep and analytical flow paths with dedicated UV-VIS and PDA detectors

 \checkmark

Inline mass spectrometry for both analytical and prep

VAPOURTEC R-SERIES FLOW CHEMISTRY SYSTEM

Column reactor, PFA reactor, High temp SS reactor, Cooled reactor

Electro-chemical reactor, Photo-chemical reactor (365, 405, 450 nm LEDs)

Inline Flow FTIR, Inline 60 MHz NMR

CHEMSPEED AUTOMATED CHEMISTRY PLATFORM

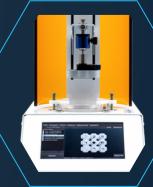
Automated library synthesis for ATRP, ROMP, RAFT, and photo-controlled polymerizations

 \checkmark

Parallel synthesis reactors for photo-, highpressure, high and low-temp reactions

ADDITIVE MANUFACTURING

CELLINK LUMEN X SLA



Prints living cells

DLP printer leverages digital micromirror device (DMD) to offer users high resolution (50µm XY, 5µm z) prints.

Prints with a 385 nm light source using an STL (stereolithography file)

CELLINK BIO X

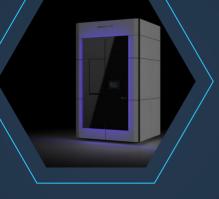
Extrusion based 3D printer with different printheads giving users the flexibility to print hydrogels, thermoplastics, and bio inspired materials.

Wavelengths: monol: 405 nm mono3: 460, 525, 615 nm

XY resolution: 20-45 µm Print speed: 420 µm/min

SOLUTION MASK LIQUID LITHOGRAPHY (SMALL)

One-step multi-material 3D printing with visible light (480-700nm)



~

CARBON M2 3D PRINTER

Creating "layerless" components with smooth external surfaces and solid cross-sectional areas of printed features via continuous liquid interface production technology (CLIP).

HIGH THROUGHPUT CHARACTERIZATION

THERMOFISHER MICROED

First-of-its-kind TFS Spectra 300C TEM Operating from 30kV to 300kV for microED & 4D STEM

X-CFEG High Brightness Electron Source

State-of-the-Art Single Tilt and Double Tilt Cryo-Transfer Holders plus Cryobox

HIGH-THROUGHPUT MICRORHEOLOGY TOOL

Passive, high-throughput method for automated microrheology

Coupled with a software that increases throughput by 30X for data acquisition and 60X for analysis for microscale volumes of fluids and soft solids

NEXT GENERATION X-RAY

High-brilliance x-ray source and large area photon counting detector

Impacts: >100% boost in measurement throughput with improved resolution

~10X increase in beam flux ~4X increase in detector area

TEXTURE TECHNOLOGIES TEXTURE ANALYZER

Mechanical testing capabilities for soft materials.



 \checkmark

 \checkmark

~1mN of force via a 50N load cell

APPLY NOW AND GAIN FREE ACCESS

For more information please visit the BioPACIFIC MIP website: **biopacificmip.org**

Join us on Social:

